QUAD SPI Slave Sender/Receiver

MJ48574
Posts: 6
Joined: Sun Dec 29, 2019 8:17 am

QUAD SPI Slave Sender/Receiver

Postby MJ48574 » Mon Feb 10, 2020 6:53 pm

I have modified SPI Slave Sender/Receiver example to allow for Quad SPI. However, the code is still running in spi mode. Even if I disconnect IO2 and IO4 pins the software still runs. Also when the Transmission no. exceeds 10000 the message gets garbelled because of length being set to 256 bits. Message "Master, transmission no. 5758. " is 30 byte plus carriage return and null termination is 32 bytes which in quad spi mode should only take 64 bits vs 256 bits in spi mode. Once the message changes to "Master, transmission no. 10000. " is 31 byte plus carriage return and null termination is 33 bytes. In this case the null termination will be dropped off.

Here is SPI Slave Sender

Code: Select all

/* SPI Slave example, sender (uses SPI master driver)

   This example code is in the Public Domain (or CC0 licensed, at your option.)

   Unless required by applicable law or agreed to in writing, this
   software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
   CONDITIONS OF ANY KIND, either express or implied.
*/
#include <stdio.h>
#include <stdint.h>
#include <stddef.h>
#include <string.h>

#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "freertos/queue.h"

#include "lwip/sockets.h"
#include "lwip/dns.h"
#include "lwip/netdb.h"
#include "lwip/igmp.h"

#include "esp_wifi.h"
#include "esp_system.h"
#include "esp_event.h"
#include "esp_event_loop.h"
#include "nvs_flash.h"
#include "soc/rtc_periph.h"
#include "esp32/rom/cache.h"
#include "driver/spi_master.h"
#include "esp_log.h"
#include "esp_spi_flash.h"

#include "driver/gpio.h"
#include "esp_intr_alloc.h"


/*
SPI sender (master) example.

This example is supposed to work together with the SPI receiver. It uses the standard SPI pins (MISO, MOSI, SCLK, CS) to 
transmit data over in a full-duplex fashion, that is, while the master puts data on the MOSI pin, the slave puts its own
data on the MISO pin.

This example uses one extra pin: GPIO_HANDSHAKE is used as a handshake pin. The slave makes this pin high as soon as it is
ready to receive/send data. This code connects this line to a GPIO interrupt which gives the rdySem semaphore. The main 
task waits for this semaphore to be given before queueing a transmission.
*/


/*
Pins in use. The SPI Master can use the GPIO mux, so feel free to change these if needed.
*/
#define GPIO_HANDSHAKE 5
#define GPIO_MOSI 12
#define GPIO_MISO 13
#define GPIO_SCLK 15
#define GPIO_QUADWP 2
#define GPIO_QUADHD 4
#define GPIO_CS 14

//The semaphore indicating the slave is ready to receive stuff.
static xQueueHandle rdySem;

/*
This ISR is called when the handshake line goes high.
*/
static void IRAM_ATTR gpio_handshake_isr_handler(void* arg)
{
    //Sometimes due to interference or ringing or something, we get two irqs after eachother. This is solved by
    //looking at the time between interrupts and refusing any interrupt too close to another one.
    static uint32_t lasthandshaketime;
    uint32_t currtime=xthal_get_ccount();
    uint32_t diff=currtime-lasthandshaketime;
    if (diff<240000) return; //ignore everything <1ms after an earlier irq
    lasthandshaketime=currtime;

    //Give the semaphore.
    BaseType_t mustYield=false;
    xSemaphoreGiveFromISR(rdySem, &mustYield);
    if (mustYield) portYIELD_FROM_ISR();
}

//Main application
void app_main()
{
    esp_err_t ret;
    spi_device_handle_t handle;

    //Configuration for the SPI bus
    spi_bus_config_t buscfg={
        .mosi_io_num=GPIO_MOSI,
        .miso_io_num=GPIO_MISO,
        .sclk_io_num=GPIO_SCLK,
        .quadwp_io_num=GPIO_QUADWP,
        .quadhd_io_num=GPIO_QUADHD,
		.flags=SPICOMMON_BUSFLAG_QUAD
    };

    //Configuration for the SPI device on the other side of the bus
    spi_device_interface_config_t devcfg={
        .command_bits=0,
        .address_bits=0,
        .dummy_bits=0,
        .clock_speed_hz=5000000,
        .duty_cycle_pos=128,        //50% duty cycle
        .mode=SPI_TRANS_MODE_QIO,
        .spics_io_num=GPIO_CS,
        .cs_ena_posttrans=3,        //Keep the CS low 3 cycles after transaction, to stop slave from missing the last bit when CS has less propagation delay than CLK
        .queue_size=3,
		.flags = SPI_DEVICE_HALFDUPLEX
    };

    //GPIO config for the handshake line.
    gpio_config_t io_conf={
        .intr_type=GPIO_PIN_INTR_POSEDGE,
        .mode=GPIO_MODE_INPUT,
        .pull_up_en=1,
        .pin_bit_mask=(1<<GPIO_HANDSHAKE)
    };

    int n=0;
    char sendbuf[128] = {0};
    char recvbuf[128] = {0};
    spi_transaction_t t;
    memset(&t, 0, sizeof(t));

    //Create the semaphore.
    rdySem=xSemaphoreCreateBinary();

    //Set up handshake line interrupt.
    gpio_config(&io_conf);
    gpio_install_isr_service(0);
    gpio_set_intr_type(GPIO_HANDSHAKE, GPIO_PIN_INTR_POSEDGE);
    gpio_isr_handler_add(GPIO_HANDSHAKE, gpio_handshake_isr_handler, NULL);

    //Initialize the SPI bus and add the device we want to send stuff to.
    ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1);
    assert(ret==ESP_OK);
    printf (" spi_bus_initialize ret: %d", ret);
    ret=spi_bus_add_device(HSPI_HOST, &devcfg, &handle);
    assert(ret==ESP_OK);
    printf(" spi_bus_add_device ret: %d", ret);

    //Assume the slave is ready for the first transmission: if the slave started up before us, we will not detect 
    //positive edge on the handshake line.
    xSemaphoreGive(rdySem);

    while(1) {
        int res = snprintf(sendbuf, sizeof(sendbuf),
                "Master, transmission no. %04i. ", n);
        if (res >= sizeof(sendbuf)) {
            printf("Data truncated\n");
        }
        t.length=128*2;
        t.tx_buffer=sendbuf;
        t.rx_buffer=NULL;
        //Wait for slave to be ready for next byte before sending
        xSemaphoreTake(rdySem, portMAX_DELAY); //Wait until slave is ready
        ret=spi_device_transmit(handle, &t);
        printf("Master rxlength: %d length: %d Ret: %d\n", t.rxlength,t.length , ret);
        n++;
    }

    //Never reached.
    ret=spi_bus_remove_device(handle);
    assert(ret==ESP_OK);
}
And here is spi_slave_receiver

Code: Select all

/* SPI Slave example, receiver (uses SPI Slave driver to communicate with sender)

   This example code is in the Public Domain (or CC0 licensed, at your option.)

   Unless required by applicable law or agreed to in writing, this
   software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
   CONDITIONS OF ANY KIND, either express or implied.
*/
#include <stdio.h>
#include <stdint.h>
#include <stddef.h>
#include <string.h>

#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "freertos/queue.h"

#include "lwip/sockets.h"
#include "lwip/dns.h"
#include "lwip/netdb.h"
#include "lwip/igmp.h"

#include "esp_wifi.h"
#include "esp_system.h"
#include "esp_event.h"
#include "esp_event_loop.h"
#include "nvs_flash.h"
#include "soc/rtc_periph.h"
#include "esp32/rom/cache.h"
#include "driver/spi_slave.h"
#include "esp_log.h"
#include "esp_spi_flash.h"
#include "driver/gpio.h"




/*
SPI receiver (slave) example.

This example is supposed to work together with the SPI sender. It uses the standard SPI pins (MISO, MOSI, SCLK, CS) to
transmit data over in a full-duplex fashion, that is, while the master puts data on the MOSI pin, the slave puts its own
data on the MISO pin.

This example uses one extra pin: GPIO_HANDSHAKE is used as a handshake pin. After a transmission has been set up and we're
ready to send/receive data, this code uses a callback to set the handshake pin high. The sender will detect this and start
sending a transaction. As soon as the transaction is done, the line gets set low again.
*/

/*
Pins in use. The SPI Master can use the GPIO mux, so feel free to change these if needed.
*/
#define GPIO_HANDSHAKE 5
#define GPIO_MOSI 12
#define GPIO_MISO 13
#define GPIO_SCLK 15
#define GPIO_CS 14
#define GPIO_QUADWP 2
#define GPIO_QUADHD 4


//Called after a transaction is queued and ready for pickup by master. We use this to set the handshake line high.
void my_post_setup_cb(spi_slave_transaction_t *trans) {
    WRITE_PERI_REG(GPIO_OUT_W1TS_REG, (1<<GPIO_HANDSHAKE));
}

//Called after transaction is sent/received. We use this to set the handshake line low.
void my_post_trans_cb(spi_slave_transaction_t *trans) {
    WRITE_PERI_REG(GPIO_OUT_W1TC_REG, (1<<GPIO_HANDSHAKE));
}

//Main application
void app_main()
{
    int n=0;
    esp_err_t ret;

    //Configuration for the SPI bus
    spi_bus_config_t buscfg={
        .mosi_io_num=GPIO_MOSI,
        .miso_io_num=GPIO_MISO,
        .sclk_io_num=GPIO_SCLK,
        .quadwp_io_num=GPIO_QUADWP,
        .quadhd_io_num=GPIO_QUADHD,
		.flags=SPICOMMON_BUSFLAG_QUAD

    };

    //Configuration for the SPI slave interface
    spi_slave_interface_config_t slvcfg={
        .mode=2,
        .spics_io_num=GPIO_CS,
        .queue_size=3,
        .flags=(1<<4),
        .post_setup_cb=my_post_setup_cb,
        .post_trans_cb=my_post_trans_cb
    };

    //Configuration for the handshake line
    gpio_config_t io_conf={
        .intr_type=GPIO_INTR_DISABLE,
        .mode=GPIO_MODE_OUTPUT,
        .pin_bit_mask=(1<<GPIO_HANDSHAKE)
    };

    //Configure handshake line as output
    gpio_config(&io_conf);
    //Enable pull-ups on SPI lines so we don't detect rogue pulses when no master is connected.
    gpio_set_pull_mode(GPIO_MOSI, GPIO_PULLUP_ONLY);
    gpio_set_pull_mode(GPIO_SCLK, GPIO_PULLUP_ONLY);
    gpio_set_pull_mode(GPIO_CS, GPIO_PULLUP_ONLY);
    gpio_set_pull_mode(GPIO_QUADWP, GPIO_PULLUP_ONLY);
    gpio_set_pull_mode(GPIO_QUADHD, GPIO_PULLUP_ONLY);


    //Initialize SPI slave interface
    ret=spi_slave_initialize(HSPI_HOST, &buscfg, &slvcfg, 1);
    assert(ret==ESP_OK);

    WORD_ALIGNED_ATTR char sendbuf[129]="";
    WORD_ALIGNED_ATTR char recvbuf[129]="";
    memset(recvbuf, 0, 33);
    spi_slave_transaction_t t;
    memset(&t, 0, sizeof(t));

    while(1) {
        //Clear receive buffer, set send buffer to something sane
        memset(recvbuf, 0xA5, 129);
        sprintf(sendbuf, "Slave, sending data for transmission number %04d.", n);

        //Set up a transaction of 128 bytes to send/receive
        t.length=128*2;
        t.tx_buffer=NULL;
        t.rx_buffer=recvbuf;
        /* This call enables the SPI slave interface to send/receive to the sendbuf and recvbuf. The transaction is
        initialized by the SPI master, however, so it will not actually happen until the master starts a hardware transaction
        by pulling CS low and pulsing the clock etc. In this specific example, we use the handshake line, pulled up by the
        .post_setup_cb callback that is called as soon as a transaction is ready, to let the master know it is free to transfer
        data.
        */
        ret=spi_slave_transmit(HSPI_HOST, &t, portMAX_DELAY);

        //spi_slave_transmit does not return until the master has done a transmission, so by here we have sent our data and
        //received data from the master. Print it.
        printf("Slave Received: %s\n", recvbuf);
        n++;
    }

}


And here are is the screen outputs of sender and receiver
Image
Image
Image of receiver when counter exceeds 10000.
Image
Attachments
Annotation 2020-02-10 135024.jpg
Annotation 2020-02-10 135024.jpg (269.59 KiB) Viewed 4485 times
Annotation 2020-02-10 133706.jpg
Annotation 2020-02-10 133706.jpg (237.6 KiB) Viewed 4485 times
Annotation 2020-02-10 133612.jpg
Annotation 2020-02-10 133612.jpg (415.35 KiB) Viewed 4485 times

mikemoy
Posts: 627
Joined: Fri Jan 12, 2018 9:10 pm

Re: QUAD SPI Slave Sender/Receiver

Postby mikemoy » Mon Feb 10, 2020 7:31 pm

Just a super fast look, i noticed that in your Slave Sender you have

char sendbuf[128] = {0};

then

t.length=128*2;

MJ48574
Posts: 6
Joined: Sun Dec 29, 2019 8:17 am

Re: QUAD SPI Slave Sender/Receiver

Postby MJ48574 » Tue Feb 11, 2020 2:24 am

Then sendbuf is filled with snprintf in while loop and the length is 32 bytes.

Who is online

Users browsing this forum: No registered users and 80 guests